Rings and bilipschitz maps in Banach spaces
نویسندگان
چکیده
We define the geometric modulus \(GM(A)\) of a ring \(A\) in normed space \(E\) and show that set-bounded homeomorphism \(f\colon E\to E\) is bilipschitz if only \(|GM(A)-GM(fA)|\le c\) for all rings \(A\subset E\).
منابع مشابه
On Bilipschitz Extensions in Real Banach Spaces
and Applied Analysis 3 (3) k D (z 1 , z 2 ) ≤ c 1 log(1+|z 1 −z 2 |/min{d D (z 1 ), d D (z 2 )})+ d for all z 1 , z 2 ∈ D. Gehring and Palka [14] introduced the quasihyperbolic metric of a domain in R, and it has been recently used by many authors in the study of quasiconformal mappings and related questions [16]. In the case of domains in R, the equivalence of items (1) and (3) in Theorem E ...
متن کاملDerivations in semiprime rings and Banach algebras
Let $R$ be a 2-torsion free semiprime ring with extended centroid $C$, $U$ the Utumi quotient ring of $R$ and $m,n>0$ are fixed integers. We show that if $R$ admits derivation $d$ such that $b[[d(x), x]_n,[y,d(y)]_m]=0$ for all $x,yin R$ where $0neq bin R$, then there exists a central idempotent element $e$ of $U$ such that $eU$ is commutative ring and $d$ induce a zero derivation on $(1-e)U$. ...
متن کاملBilipschitz Approximations of Quasiconformal Maps
We show that for any K -quasiconformal map of the upper half plane to itself and any ε > 0 , there is a (K + ε) -quasiconformal map of the half plane with the same boundary values which is also biLipschitz with respect to the hyperbolic metric.
متن کاملOn The Convergence Of Modified Noor Iteration For Nearly Lipschitzian Maps In Real Banach Spaces
In this paper, we obtained the convergence of modified Noor iterative scheme for nearly Lipschitzian maps in real Banach spaces. Our results contribute to the literature in this area of re- search.
متن کاملAsymptotic Geometry of Banach Spaces and Uniform Quotient Maps
Recently, Lima and Randrianarivony pointed out the role of the property (β) of Rolewicz in nonlinear quotient problems, and answered a ten-year-old question of Bates, Johnson, Lindenstrauss, Preiss and Schechtman. In the present paper, we prove that the modulus of asymptotic uniform smoothness of the range space of a uniform quotient map can be compared with the modulus of (β) of the domain spa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Fennici Mathematici
سال: 2021
ISSN: ['2737-0690', '2737-114X']
DOI: https://doi.org/10.5186/aasfm.2021.4608